Global Invertibility for Orientation-Preserving Sobolev Maps via Invertibility on or Near the Boundary
نویسندگان
چکیده
منابع مشابه
Linear Maps Preserving Invertibility or Spectral Radius on Some $C^{*}$-algebras
Let $A$ be a unital $C^{*}$-algebra which has a faithful state. If $varphi:Arightarrow A$ is a unital linear map which is bijective and invertibility preserving or surjective and spectral radius preserving, then $varphi$ is a Jordan isomorphism. Also, we discuss other types of linear preserver maps on $A$.
متن کاملOn Invertibility of Sobolev Mappings
We prove local and global invertibility of Sobolev solutions of certain differential inclusions which prevent the differential matrix from having negative eigenvalues. Our results are new even for quasiregular mappings in two dimensions.
متن کاملInvertibility Preserving Linear Maps of Banach Algebras
This talk discusses a conjecture of R. V. Kadison and myself. Our conjecture is that each one-to-one linear map of one unital C*-algebra onto another that preserves the identity is a Jordan isomorphism if it maps the invertible elements of the first C*-algebra onto the invertible elements of the other C*-algebra. Connections are shown between this conjecture and Cartan’s uniqueness theorem. 1. ...
متن کاملInvertibility-preserving Maps of C∗-algebras with Real Rank Zero
In 1996, Harris and Kadison posed the following problem: show that a linear bijection between C∗-algebras that preserves the identity and the set of invertible elements is a Jordan isomorphism. In this paper, we show that if A and B are semisimple Banach algebras andΦ : A→ B is a linear map onto B that preserves the spectrum of elements, thenΦ is a Jordan isomorphism if either A or B is a C∗-al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Rational Mechanics and Analysis
سال: 2020
ISSN: 0003-9527,1432-0673
DOI: 10.1007/s00205-020-01559-7